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ivAbstract
A perfectly conducting plane screen embedded in a gyrotropic medium

is shown to be able to support a unidirectional surface wave. Such a surface

wave is assumed to be incident on the top of a semi-infinite screen. At the

edge, the incident power is converted partly into a reflected surface wave which

travels on the bottom of the screen and partly into a space wave. The angular

distribution of the radiated energy as well as the power-reflection and the

power-transmission coefficients are evaluated. Total reflection is shown to

occur for a certain band of frequencies.



TR402 Introduction

In recent times, interest has arisen in the .study of scattering of

electromagnetic waves by obstacles embedded in anisotropic media. Wave

propagation in a homogeneous, anisotropic medium is more complicated

than in a homogeneous, isotropic space since the characteristics of an anisotropic

medium, as the name itself implies, are different in different directions.

However, in general, there are two categories of problems of scattering in

anisotropic media, which are quite similar to those in isotropic space. The

scattering by cylindrical obstacles in a uniaxially anisotropic medium consti-

tutes the first category and Felsen [1] is currently carrying out a systematic

investigation of these problems. To the second category belong certain two-

dimensional problems of scattering by cylindrical obstacles in a gyrotropic

medium for the case in which the gyrotropic axis is parallel to the generators

of the cylinder and perpendicular to the direction of the incident wave. In

this paper, a simple problem belonging to the second category is investigated.

Consider a perfectly conducting screen of infinite extent embedded in

a gyrotropic medium. A unidirectional surface wave has been shown (2], [3]

to be supported along the screen. This surface wave is a plane TEM wave

having its magnetic vector parallel, and its electric vector perpendicular,

to the surface of the screen. The external static magnetic field is parallel to

the direction of the magnetic vector of the surface wave. For a given sense

of the external magnetic field, the surface wave travels only in one direction

on the top of the screen and in the opposite direction on the bottom. The
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directions of propagation of the surface waves on the top and the bottom of the

screen are both reversed, when the sense of the external magnetic field is

changed.

Such a unidirectional surface wave is assumed to be incident on the top a

of a perfectly conducting semi-infinite screen embedded in a gyrotropic medium

such that the gyrotropic axis is parallel to the edge of the screen. The uni-

directional surface wave is scattered at the open end. Part of the power in the

incident wave is carried by the surface wave which travels along the bottom

of the screen in a direction opposite to that of the incident surface wave. The

remainder of the incident power is carried by the space wave which is excited

by the discontinuity. This problem is formulated in terms of a Wiener-Hopf

integral equation, which is solved by the well-known function-theoretic methods.

Explicit expressions for the reflection and the transmission coefficients, which

give the proportion of the incident power carried respectively by the reflected

surface wave and the transmitted space wave, are determined. For certain

frequency ranges, the entire power in the incident surface wave is carried by

the reflected surface wave.

Unidirectional Surface Waves

Consider a perfectly conducting screen of infinite extent occupying

the region -oD < x < co , - o< y_<S o, and z = o, where x, y, z form a

right-handed rectangular coordinate system. (Fig. 1) . The entire space
exterior to the screen is filled with a uniform plasma. A uniform magnetic
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field B is impressed in the positive y direction throughout the plasma.0

Under certain simplifying assumptions [2] which are usually made, it is found

that in the plasma region, after the usual linearization, the electric and

magnetic fields satisfy the time-harmonic Maxwell's equations
Vx' = i ° (1) J

VxH -iW Ct° E (2)

where jo and e are the permeability and dielectric constant pertaining

to vacuum. A harmonic time dependence e itis assumed for all the field

components. The components of the relative dyadic dielectric constant

are given by the following matrix

0= FI3
i2 o 0 (3)

where

Z2 -R 2 - 1
1 = _2 R R 2

R

•2 = l(• 2 
- R 2 )

I3 £ 3 = 1 1

tO and =R c (4)
p 

p
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The plasma frequency Wp and the gyromagnetic frequency Wc of the electrons

are given by

eB 0  2 Ne 2  (5)

c m ' p meo 0

where e is the charge of the electron, m is the mass of the electron and

N is the average density of electrons.

Only the two-dimensional problem for which all the field components

are independent of the y coordinate will be considered. For this case, the

electromagnetic field is separable into E and H modes. Since unidirectional

surface waves are present only in the case of the E mode, the H mode will

not be considered. For the E mode, only a single component of the magnetic

field, namely, Hy is present. With the help of (2) , the nonvanishing

components of the electric field can be shown to be given by

is 1  862 a
Ei(x•) H (x, z) - H (x, z)

x we C 8z y 8x y

iC1  8 8

(x, z)= Hy (x, Z) we HC (, z) (6)

where

2 2£ = £ - £2 (7)

With the help of (1) and (6), it is found that Hy (x, z) satisfies the following

wave equation:
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÷ k 2 H (x, z) = 0 
(8) 1

where
2 JA o eo 2

k2 = e k= F (9)

In (9), k is the wave number corresponding to vacuum.
0

In view of (8), it is reasonable to assume the following solution for

H (x, z):

ik x+ik2-kT2I zI

H (x, z) = H e x x(10)

where

VCZx' = + PY_ k~x if k > k

R:+i - if k<k_. •11x x

.Since the screen is perfectly conducting, the following boundary condition has

to be satisfied on the surface of the screen:

Ex (x, 0+) = 0 (12)

For z > 0 , (10) satisfies the boundary condition (12) provided

2= ic 2 k (13)•.•x x.



TR402 -6-

With the help of (7) and (9), the solution of (13) for kx is easily shown to be

given by

k = kC 0 2 > 0 (14a)

= -- ko 1  -2 < 0 (14b)

Hence, for C2 < 0 , (10) becomes

-iko I 0\"- X - k le z

Hi (xz)= Hs e for z> 0 (15)

In a similar manner for z < 0 , (10) satisfies the boundary condition (12)

provided

| •l/k2- k'x =-ie2 kx (16)

and hence for z < 0

k = koC C2 > 0 (17a)

k = 2 <k0 (17b)

Therefore, for e2 < 0, (10) becomes

iko \/F- 21 for z < 0 (18)

H (x, z) = H ey

It is clear that (15) and (16) represent surface waves for the range of f for

which e1 > 0. In Fig. 2, aplot of e1 as a function of Q is given. An

examination of Fig. 2 shows that CI > 0 in the following frequency ranges:

I
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0 < f < R and v'"+ < 1 <o .

Note that R is positive. From the expression of e2 given in (4), it is

obvious that C2 < 0 for the frequency range 0 < C < R and e2 > 0

for V < C2 < o . It is clear that the sign of C2 will change, if

the sense of the external magnetic field is changed. It is assumed in what

follows that the external magnetic field is in the positive y direction for the

frequency range 0 < 2 < R and in the negative y direction for V/I R

< C2 < o . As a consequence 9 2 is always negative. Therefore, (15) and

(18) give Hi (x,z) for z >0 and z < 0 respectively. For the frequencyY

ranges 0 < C2 < R and V/I'+ R < U < oD , (15) and (18) represent surface

waves. On the top ( z > 0 ) of the screen, the surface wave travels in the

negative x direction and on the bottom (z < 0), it travels in the positive x

direction. For the specified orientation of the external magnetic field, a

surface wave which travels. in the positive x direction on the top of the screen

and in the negative x direction on the bottom is not obtainable. The surface

waves are therefore unidirectional in character. Since for the surface wave,

Ex(X, z) = 0, it is clear that it is a TEM wave with its magnetic and electric

vectors respectively parallel and perpendicular to the surface of the screen.

The excitation of these surface waves was discussed in an earlier paper [2].

H
Ii

Id
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Scattering of the Surface Wave at the Open-end

It is now desired to examine the effect of terminating the perfectly

conducting screen (0 <_x < co) at x = 0 , on the surface wave given by (15)

when it is incident on the top ( z > 0 ) from x = oo (Fig. 3).. It is emphasized

that a surface wave traveling in the negative x direction cannot be sustained

on the bottom of the screen. Hence., the incident surface wave is only on the

top of the screen. No surface wave can be supported in the region x < 0 ;

also a surface wave traveling in the positive x direction cannot be supported

on the top of the screen. Hence, the incident surface wave will be partly

reflected back as a surface wave on the bottom and partly converted into a

radiation field.

Since only the y component of the magnetic field is present, the

current I(x) induced on the screen is in the x direction. When the current

term is added to the right-hand side of (2), it follows that H (X, z) satisfies
y

the following inhomogeneous wave equation:

( + a2 + k2 )Hy(X, Z) = - [ L 2 a + a I (x) a (z) (20)

The solution of (20) is easily obtained to be

(x Z) = (~i2 1 + I I (x,)Ho()[k /x+.,+z2]dx,. (21)

Together with (6) and (8) , it can be shown that for z = 0
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E 8 0 + k 2  ) (I(x")Ho(1)[k x-xIJ dx' (

Since the perfectly conducting screen occupies only the region x > 0 the

boundary condition (12) holds only for x > 0

The application of a Fourier transformation to both sides of (22) yields

ax 2wc0C 1 )(0), (23)

where

0

x = Ex (x, 0) e-i" dx (24a)
-00

00

()= l(x) e~x dx (24b)

0

The branch cuts are defined as -in (11)

It is first necessary to know the regions of regularity of the various

transforms in (23) . From (15) the incident current density is obtained to be

-iko-iX

1 i(x) = -H e o (25)

Also, as x -m , I (x) should be of the form
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I(x) =H [ H ik F- + x 1 kr- (26)

where the first term is the incident current density and r is the reflection

coefficient at x = 0 . It is found from (26) that [ko2 C1 -2 2 ]C (C ) is regular

in the lower half-plane ImC < - Irnk . Also inx (•) is regular in the upper

half-plane Irn C'> Ir k . In addition, the transform of the Hankel function,

2 is regular in the strip IrImn < Irnk . The transform relation (23) is

valid in the strip I Im < Irm k and,therefore, the Wiener-Hopf procedure can

- be applied to solve (23) . It is assumed that k is real with a small imaginary

part which is introduced for convenience and set equal to zero in the final

formulas. Rewriting (23) as

[ko 2l "
2 2

[=)( -- 2weEo 1 v (e'), (27)

it is seen that the right-hand side of (27) is regular in the upper half-plane and

the left-hand side is regular in the lower half-plane. Both are regular in the

strip I ImC I < Im k and may be considered as analytic continuations of each

other; together they define an integral function. Since the current is

perpendicular to the edge, the Meixner Corner Condition requires that I(x)

vanish at x = 0 as x1/2 Therefore, it follows that r(C) -3/2 as c o

in the lower half-plane. The asymptotic behavior of the left side of (27) as
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-"co j shows that the integral function is a constant. Hence,

T(r) C V -7 2 (28)
ks,2 e 1"

After taking the transforms of both sides of (21) with respect to x, substi-

tuting the value of r(.t) from (28) and writing the inverse transform, one

obtains the following expression

GO i ' q z Cx
Hf(x,z)- - (-. ' + iVk2.- eC dr. (29)El - I(ks2c1  -2 )v T-

In (29) , the upper and lower signs hold, respectively, for z positive or negative.

The contour for integration in (29) is shown in Fig. 4 . For x > 0 , the

integral can be evaluated by closing the contour in the upper half-plane . For

z >0 , the residue at the pole k = ko 1 is seen to be zero, if the fact that

E2 < 0 is noted. The contribution from the pole k = - ko /1 is

c1=21 ~-ik°VI -k°• z

Hi (x, z) = 2 1 -ik S1x - (30)Y 2& 1 A/ _-E ks •-

This gives just the incident surface wave (15) . Hence, the constant C can

be determined and it is given by

2Hse 1l• " ko teI

c = 2H ,c2 (31)
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For z < 0 , the residue at the pole C = - o /e1 is zero and the contribution

from the pole • = ko R7 shows the reflected surface wave to be

ik i x + k0121z

Hy (x,z) = H r e

where the reflection coefficient r is given by

r- k - ko 0 -IC (33)Tk + ko0\F-I

It is desired to calculate the incident power, the power in the reflected

surface wave and the power transmitted as a space wave, all per unit width

of the screen. The power in the incident surface wave per unit width of the

screen is obtained from the relation

OD

1P. - x Re (x, z) x H (x, z) dz
1 -T

0

i i-T Re E E I(x, z) H i (x,z) dz (34)

0

With the use of (15) in (6), it is found that

k iko VIP- x -o 77k

Ei (x,Vz) 0 H e25z W Hs •~r



TR40Z -13-

Together with (15) and (35) , (34) yields

.IH 12 (36)

In a similar way the power transmitted in the reflected surface wave per unit

width of the screen is

P 1Hs1 I 2  (37

r = 4w 0 I!cr(

The reflection coefficient S, which is defined as the fraction of the incident

power carried by the reflected surface wave, is therefore given by

s -- .- =Irl = . (38)
1 1 +1/

The power radiated in the form of a space wave can be evaluated in the

following manner. For this purpose, it is convenient to introduce the polar

coordinates

x = p cos 0 z p sin g (39)

and the following transformation:

=k cos - (40)

With (39) and (40) , (29) reduces to

ikP cos (7-0)
iCk2  ( 2e sinrd ]

H (p,0) -- 2 cos r + i sin -r 2 1
[ke-k cos r[k+kcor
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For kp >> 1, (41) is evaluated by the saddle-point method. It yields the

space wave part as follows:

f 2 coo 0+ i sin sin 0 i(kG- 7-7

HR (pk, 0) 2 2 1 (42)
Hy kp0)=2 2 2)Z• (ko C k cooz GO( + k coo 0)

With (6) and (39) , it may easily be shown that for kp >> 1

~- ,) 1 H (p, 0) (43)

The outward power flow, per unit area, per unit length of the screen at an

angle 0 is obtained from (42) and (43) to be

5 R R Rep* E(p,o) x Ft*(p,0) : 2 I H*(p,0) 12

0

C C 12F(Q): [c3 r0 (44)
16irp wk e 0 C1

where

F(0) G (1-coso) (45)
• [1 --- E cos 0]

F (0) given in (45) is defined to be the radiation pattern. The total power

pR radiated in the form of space waves is
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PR= SRp dQ I C 12 F(Q) dO (46)

0167r wkeo01  0

It can be readily shown that for F (0) in (45)

21 F(O) dO = 1TlC (47)

The use of (31) and (47) in (46) yields, after some simplification,

12
R IH 8 VpR = 0 Hs . (48)

2w o I cz I (c 1I+V'/'-

The transmission coefficient T , which is defined as the ratio of the power

radiated as a space wave to the incident power, both per unit width of the

screen, is therefore

T =(49)
Cl+

It may be verified from (38) and (49) that S + T = , as it should.

All the above results are derived under the assumption that k is

real. It is, therefore, pertinent to find out the ranges of Q for which k

and hence, is real and positive. From (4) and (7), it is clear that
El

-E is always real. It can be shown by simple manipulation that

) ( - (l1)1 j2)
Cl 3 (50)

a 2
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where

R R + 1

and
RS= @ -+ + 1 . (51)

"3 -7-* T +1T

Further, it is easily established that < R < 22 < 123 From (50), it is

obvious that C > 0 only in the frequency ranges 6 < 12 < andel 1 tt2
23< C2 < co (Fig. 2). Hence, the expressions for the reflection coefficient,

the radiation pattern and the transmission coefficient given, respectively, in

(38), (45) and (49) are valid only for <I < f2< C2 and l3 < 2 < co"

The incident surface wave assumed in (15) is legitimate only for the

frequency ranges defined in (19). Therefore, C is also restricted to these

C2ranges . Within the stipulated ranges of , and hence k is negative

in the ranges 0 < C2 < 11 and 22 < 92 <23 3 For k purely imaginary, the

solution of (23) has to be modified, with the result in the final solution (28)

k should be replaced by i IkI . Then it is obvious from (33) and (38) that

S =1 (52)

for 0 < C2< C21 and C• 2< Cl<C " When k in (42) is replacedby ilk , it is

seen that the space wave is exponentially damped and hence, no power is

radiated in the form of a space wave. He:ice,

T =o (53)
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for 0 << 0 1 and 22 < 1 < .3 . The power in the incident surface wave

traveling on the top of the screen is totally reflected as a surface wave which

travels on the bottom of the screen when 0 is in the ranges: 0 < 1 < C2

and C22 < f< C3.

Numerical Results

The reflection and the transmission coefficients are computed as a

function of C2 for a particular value of R , namely R = f"-. It is seen from

an examination of Fig. 5, that the reflection coefficient is unity from

0 <1 < n, ; it falls off rapidly as C2 is increased beyond fl , reaches a

minimum and then increases to unity at CZ = R . It starts again at unity when

2 = S2 and remains at that value for C2 up to C3 ; then it quickly falls to zero

as C2 is increased beyond l3 * It is obvious that in the frequency ranges for

which the reflected surface wave and the space wave are present, the major

portion of the energy is transmitted as a space wave except for Q very near

1 ,Rand S32. For a certain frequency between and R, the transmission

coefficient has a maximum, and in the frequency ranges considerably greater

than 23 , a negligible amount of incident power is reflected as a surface wave.

The radiation pattern F(Q) given in (45) is plotted in Fig. 6 for R =3

and for three values of (. It is found that the radiation pattern always has a

null in the direction of the screen and a maximum in the opposite direction.

It is found that for f2 > ,1 the maximum increases very rapidly with (

3
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as can be seen from the patterns for 62= 5 and ( = 5. 5. For example, when

( = 3 , the maximum value is nearly 20 times larger than that for C2 = V1 =.

The reason for this rapid change in the maximum in the radiation pattern can

be explained in the following manner. For A > (2 3 the reflection coefficient

S falls off very rapidly as C2 is increased beyond 1 3 . Hence, the major

portion of the incident power is transmitted as a space wave. Als.o as

is increased beyond % ' 2 rapidly decreases to a very small value. As a

consequence, the exponential attenuation in the incident plane wave is rapidly

reduced. The incident wave becomes very nearly a homogeneous plane wave

and therefore, the total incident power increases sharply when 0 is increased

further . Since the major portion of the incident power is transmitted as a

space wave, the maximum in the radiation pattern rises sharply as C is

increased beyond (3
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